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gb on U

0 outside of U
Then f is continuous -- for VC IR open, f-i(V) = (gb)-i(V) is
openif 0 ¢V, andif 0¢ V, f-i(V) = (gb)-i(V) U(M - C'") is open,
since C' is closed by the above remark. Moreover f is smooth,
since g and b are both smooth,

The theorem shows that we could have defined a manifold in terms
of functions defined on the entire manifold. However, such a definition
would make it more difficult to show that certain manifolds (such as
tangent bundles) can be constructed by piecing together other manifolds.

Note that the Theorem would also hold for topological manifolds,

but does not hold for analytic manifolds, because the bump function

cannot be made analytic.

33. Volumes on Symplectic and Contact Manifolds.

Let us now review the standard set-up we use for discussing mech-
anics on a general differentiable manifold. Configureation space, C, is
an n-dimensional manifold whose points correspond, roughly speaking,
to "configurations" or "positions" of the mechanical system. Phase
space is the cotangent bundle, T°C, with the canonical 2-form w; in
local coordinates, w =2 dpi/\ dqi° We define event space to be the
topological product C X I, where I is an interval of time, that is, an

interval on the real line with t as coordinate. A point (c,t) of event
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space represents the state c at the time t. Finally, state space is
defined to be the product manifold T°'C X I, endowed with the canonical
one-form given in local coordinates as 6 =-% pi'\ dq1+ dt.

Now recall from Part I,§22, that a symplectic manifold (M, w) is

a manifold M of even dimension 2n together with a closed 2-form w
such that wA ... A @ (n factors) is nowhere zero. Each phase space

T'C is a symplectic manifold. Similarly, a contact manifold (M, 8) is

a manifold of dimension 2n + 1, where n is an integer, with a one-
form 6 such that the (2n+i1)-form 0 A de A ... A d6 (n factors d8) is
‘non-zero everywhere. State space is an example of a contact manifold.
(Note: These contact manifolds are called "exact contact manifolds" in
Abraham, loc.cit.)

Both a symplectic manifold and a contact manifold have a non-zero
form of highest dimension; that is an "element of volume". For ex-
ample, in euclidean three-space an element of volume is usually written
dxdydz = dxAadyadz with respect to rectangular coordinates;
rZ sin® dr d8 d¢ with respect to spherical coordinates, and so on. In

general a volume element on an n-dimensional vector space W is a non-

zero element b ¢ An(W)" Since the n-th exterior power An(W) is a one-
dimensional vector space, any two volume elements b and b' on W
are proportional: b' = rb, where r is a non-zero number. Now we

often speak of "right-handed" and "left-handed" coordinate systems on
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Euclidean three-space; similarly, there may be two types of volume
elements. To see this; say that b and b' are equivalent if the pro-
portionality constant r is positive. This divides the volume elements
up into equivalence classes: dxadyAdz = -dxadzady = dzAdxady,
so the elements dxadyadz and dz Adx Ady are equivalent.

A volume on an n-dimensional manifold M is a form £ on Qn(M)
which is non-zero everywhere on M. Any two volumes 2 and Q' are
related by the formula Q =£fQ', where f is a smooth non-zero real-
valued function on M. If f is positive everywhere, call 2 and '
equivalent. Then an orientation of M is defined to be an equjvalence
class of volumes. Since M may not have a volume in the first place,
M may not be orienfable; however, we have seen that symplectic
manifolds and exact contact manifolds are orientable., A mdbius strip
is an example of a non-orientable manifold.

Let Q be a volume on the n-dimensional manifold M. If X is a
vector field on M, the Lie derivative LXQ is another n-form. But
any two n-forms at a point are proportional. Thus there is a smooth
function f such-tha.t LX(Q) = £Q. We write f = div X; notice that
div X dependé on the choice of a volume element. Does this agree
with the usual notion of the divergence of a vector field? In the situa-
tion M = IRn, with coordinates xl, i ® B xn:. we can write

1 n i 9

Q=dx1\.,,./\dx,andX=ZX Then

ox
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X
i
But
. 1
' : x :
Lydx" = Sy et = E g
- J i
j ox ox
Hence
n i
oX
L@ = [> ()
i i=1l o9x
so divX = Z i}% ,as expected,
ox

Moreover, our generalized definition of divergence proves a suit-
able extension of the idea of divergence as the infinitesimal change of
volume at a point. For (Part I, 24) the derivative LXQ describes the

rate of change of the volume along the trajectories of X.

34, Poisson Brackets.

Let (M, w) be a symplectic manifold, with symplectic coordinates
iy, . . :
{pi, q}; if £ and g are two real-valued functions on M, the poisson
bracket of f and g with respect to the coordinates P, q1 is the

smooth function defined by

# .
_ of dg of 9g

(tg = S e e
i=1 dq Bpi api 9q

It can be shown that the value of the poisson bracket {f, g} of f and g
does not depend on the choice of coordinates; however, we seek an
invariant description of this function, since it will help us find a formu-

lation of the laws of mechanics leading naturally to quantum mechanics.
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We now develop the general algebraic machinery needed for this
invariant definition of the Poisson brackets. We previously defined
the exterior derivative d, which takes k-forms into (k+l)-forms
for every non-negative integer k. Given a vector field X, there is

likewise an operation i, mapping (k+l)-forms w to k-forms ixw:

X
igol(Xp, e Xp) = ()oK, X, ., X))

i
= iZ‘,(-l) WX e X LXK LX)
Finally, the Lie derivative LX takes k-forms to k-forms., We can now

state three identities:
(1) i,d+ di’{(\\= ("homotopy identity");
= Lx .
(2)  Lg(nXpse...X )= (Lem(X oo, X )+ E .o S F SRS W)
where 7 is a k-form, so that 'q(Xl, P ,Xk) is a function on M;
(3)  2du(X,Y) = Low(Y) - Lyw(X) - o[X,Y]),
where ® 1s a one-form.,
Proof. For (1), we first notice that 1X is an antiderivation: that is
if « is a k-form,
: . k .
i (anB) = (iy@)p + (-1) an(iyB).
This is an easy computation from the definition of J_X ’
Now we prove 1Xda F dlxa = LXar by induction on k: for a function
f (a 0-form), in is defined to be zero, and we have ide = {df,X>= LXf.
Assuming the result true for k-forms, write a general (k+l)-form, a, as

= dfi,\ w3 by linearity it will suffice to prove the result for each summand.
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But

L (dfaw) = (L df),\w+de(LXw),

X( X

while

ixd(dew) + diX(dew)

-i.x(df/\dw) + d(idei\o.; - dein)

-(ixdf)/\dw + d:EA(ide)
+ (dide)Aw + (ixdf)/\dm + de(d1Xw).
Here the first and fourth terms cancel, giving

dfA(iy dw) + (digdf)aw + dfA(diy )

dfA wa + ('di_xdf'\w) (by inductive assumption)

deLXw+(d(LXf)/\m) = deLXw + (Lde)Aw.

This proves (1).

For part (2), recall that L commutes with contractions, while

X

evaluation of n at (X »X.) is nothing but the contraction

17002 Xy
6 (n ®Xl ®... ®Xk)° With this observation (2) follows from the fact
that L. is a derivation, To derive (3), we verify the formula for

w = gdq, since we can then extend to a general one-form w by linearity,

But since dw = dgadf, it is easy to show that both sides of (3) reduce

to (LXg)(LYf) - (fo)(LYg)ﬂ A similar argument shows that for w any

k-form,
k : R
+ p SR = . R S
(4) (tl)du(X )= 21 Ly (X X, X))
i=0 i
it A A
+ > (-1) Jw([xi,x.],xo,m,xi,...,x,,..,,xk),
0<i<j<k ) J

(Here the A over Xi means "omit Xi"-)
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Now let (M, w) be a symplectic manifold. w induces linear map-
pings (§21) X —» X" and o —>a# taking vector fields into co-vector
fields (= l1-forms), and vice versa. We may now define the poisson
bracket of two one-forms, @ and 8, by

Definition. {a.B} = -[a#, B#f .

In other words, we turn the forms temporarily into vector fields,
take the Lie bracket, and return to the épace of forms. The minus
sign is chosen for convenience in proving such formulas as

Proposition. {a,p} = -La#ﬁ + Lﬁ#a + d(i #L w).

aﬁ#

Proof., w is closed, hence by (4) above
0 = 3dw(X, Y, Z) = LX(m(Y= Z)) + LY(w(Z,X)) + LZ(w(X_., Y))

- o([X, Y], Z) + o([X, Z2]. Y) - ([Y, 2],X).

If we let X = a#_n Y = ﬁ#, and recall that, by the definition of #, we have
m(a#,Y) = %af(Y), the above equation becomes

1 1 ; # _#
0= La#(zﬁ(z)) - Lﬁ#(?(Z)) + LZ(OJ(Q’ 3 ﬁ ))
+ol{a, p17, 2) + olla’, 21,8) - w((8", 21,0
Therefore

-La#(-liﬁ(z)) + Lﬁ#(%"‘(z)) - Lz(w(a#g 6")

= M 1)z - Lela, 2] + Lalp?, 2]
1 1 !
= E({a’ BH)Z - = ﬁLa#Z s afLﬁ#Z .



-24-

Now the proposition follows from the three identities

L 43 8(2) = & L 4Pz + o AL 42)
1 1 1
-LB#(EQ(Z)) = - E(Lp#a)z - E a(Lp#Z)
# # et
-ZLZ(w @ ,p ]) = d(1a#1ﬁ#w)z,

of which the first two are merely (2). above, and the third is a con-
sequence of the equation in(Y) = 2w(X, Y).

Corollary 1. If B is closed. then {e,B} =1L 49 -
Proof. By the homotopy identity, P
L ,B-1 ,dp+d1 B
alt # aff

a
= 0 + 2a(3 p(a")) = 2d(w)p" &) = alr 41 ,0)
a” B
Now use the proposition.

#

Corollary 2. If o and B are closed, {a.B} = L 4@ = -L #ﬁ = 2d(w(p" .
B o

Corollary 3. If o and B are closed, {a,B} is exact.

For {a,p} = d(2«(p", o).

Now by using #, we see that each function f{ on M determines a

vector field X, = (df)#

Corollary 4. If f and g are smooth functions on M, then

{df, dg}

Ly (df) = d(Ly f)
g g
-fo(dg) = - Lng)

1]

Zd(w(Xg, Xf)) "
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Definition. The Poisson bracket of the functions f and g is

(fgd =Ly £ (X, =(dg"). (Hence a{t,g) = {af, dg)).

g
Proposition. LX fo= -Lxg = —Zw(Xg,Xf).
g f
Proof, Lng = ganX > = (at,agh> = 20, agf)
= = - = = # #
ZM(Xf,Xg) 2(.0(Xg= Xf) 2w(dg™, df™)
= - <ag, >
= g.
Xf
In particular, LX f =0 if and only if LX g = 0. Thus f is constant
g f

on the trajectories of g if and only if g is constant on the trajectories
of f. (By the trajectories of f we mean those of the vector field Xfe)
Of course, we must check that this definition agrees with our
coordinate-wise notion of poisson bracket. Let the symplectic co-
ordinates be {pi, qi}, This means that « =3 dp, A dqi, Any l-form «

can be written . .
o B hidql + = k‘]dpj ,

while any vector field X can be written

X=EX1L.+ZTJL.
gl op
q J

Then we have seen that

x" = zThq - = X'dp,
ot =z 2 1z 2.
qu ¥ Bpi

Thus {f, g} = -LX g=Z( Bzf a_g - ol aag ) as expected.
f i 8dd add P
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Since our poisson bracket { , } was defined invariantly from
the 2-form w, the formula holds for any symplectic (= canonical) co-
ordinates. In particular, this formula gives the poisson bracket of
any two coordinate functions. We can dedﬁce hence that a set 6£ Zn

functions Ql 5§ 69 Qn, P.sesa Pn on a sy-niplectic manifold are sym-

1

plectic coordinates if and only if they satisfy the relations

for all i and j.

One can also prove that a transformation ¢:(M,w) — (M, w)-is

symplectic if and only if it preserves all poisson brackets of functions.

Proposition. For any three smooth functions on a. symplectic

manifold
{£,{g,n}} + {g{n, £}} + {h.{£,g}} = 0.
This asserts that the set of smooth functions is a Lie algebra under
the poisson bracket { ., 1.

Proof,

{f,{g,h}} + {g, (b, £}} + {n, {£, g}}

= L. L_h - L_L_h+L h
p e X
£ g g °f {f. g}

and this is zero, because

(s, g = () = ot ag) « (o agl) < -3 )
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Here is an application of the antisymmetry of the poisson bracket.
Consider k particles moving in three dimensional space. Their posi-
tion is then specified by 3k coordinates

Gy ¥y s 203 % Yo 2 o0 Fyge Vier i
so that the configuration space C is ]R3k. In the corresponding
phase space M = T°C we can write down the Hamiltonian function H
in terms of the potential energy V and the usual kinetic energy of the
3k particles, If we assume that V depends only on the distances be-
tween particles, then the Hamiltonian H is left fixed by the trans-
formations of M induced by rigid motions, like translations and
rotations, in IR3,  Let Xg be the vector field corresponding to such
a translation; then Xg leaves H invariant. By anti-symmetry, XH
must leave g invariant; that is, since the system moves along the
trajectories of H; g is a constant of the motion. For translations,
g turns out to be the linear momentum, while for rotations g is angular
momentum. -We have just derived the familiar conservation-of-momentum
laws. In general, any function f with {f.H} = 0 is a constant of the

motion,
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35, Submanifolds and Immersions.

We will study "energy surfaces'' (submanifolds of constant energy);
for this we need some facts about submanifolds. In a number of places
in these lectures we have used (and will be using) the theorem below
and its .corollaries. (Here Df(m) is the map induced by f on the

tangent space at the point m.)

Theorem. (Inverse Function Theorem): Let M i> N be a smooth
function. If Df(m) is an isomorphism, then f is a local diffeomorphism
at m; i.e., there are neighborhoods U of m and V of fm such that IC(U):V ﬂo-.b
f|U: U—> V has a smooth inverse.

Corollary 1. (Implicit Function Theorem): Let M L N be a

smooth function. If Df(m) is a surjection, then f is locally a pro-

jection;i.e., there are charts (U,f) at m and (V,{) at fm such that

gu=uU'x v’ M : > N
v = v U
-1 me U fmeV
and yoefey is the projection = i
= ¢ =, = 4"
of U'XV' onto V', gy —befe g > W

Corollary 2. Let M > N be a smooth function. If Df(m) is
an injection, then f is locally an injection; i.e., there are charts

(U,4) at m and (V,y) at fm such that gu=U', 4V =U'X V', and

-1
Yeofod is the injection of U' into U'X V' as U'X 0.
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In what follows, M and N are manifolds and a € M, An
f
immersion of M in N is a smooth function M —> N with the
property: for each f(a) ¢ N, there is a chart at f(a) with coordinates
1

d ;
(o ([P qn such that qlf, ...,q f are coordinates for a chart at a,

for some d < n.

By Corollary 2 above, a smooth function M >N is an immer-
sion if and only if Df(a) is an injection for every a e M. An embedding
is an immersion which is a homeomorphism onto its image endowed
with the subspace topology. A weaker notion of embedding which some-
times is used is an immersion that is an injection (1-1 function); but

the stronger sense seems to be what we want for mechanics. If MC N

and the inclusion is an embedding, then M is a submanifold of N. One

last definition: the point e ¢ N 1is a regular value of f if and only if the

Jacobian Df(a) has maximum rank for every a such that f(a) = e.

5 ; < ; m n . -
Since Df(a) is a linear transformation from IR to IR it will have
maximum rank when it is surjective if m > n and when it is injective

if m <n.

f

Theérem, Let N,P be manifolds and N >P a smooth
function. If e e P is a regular value of f, then f_l(e) is a sub-

manifold of N.
|

. N
Proof. Since the inclusion f 1(e) C M is clearly a homeomorphism

onto its image we need only show the immersion property. Take ae¢ N

so that f(a) = e,
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Case (i). Df(a) is surjective:  Then Corollary 1 of the Inverse
Function Theorem gives a chart (U,#) at a such that
¢(f'1(e) A U)=U" and U= U'X V', Locally the picture shows what

the manifold M looks like near a.

‘Vl

Ui

. -1
Case (ii). Df(a) is injective: Then f is an injection near a, so f fe)
is a set of isolated points each of which is a submanifold. Thus the

union of these is a submanifold, so the theorem is proved.

If P=1R inthe theorem, it is useful to have explicit local co-

1 n
ordinates for a point a such that f(a) =e. Let q ,...,q be any co-

ordinates around a; then Df(a) = (8+ g NE B4 aLn)a where e is a
8q 9q
regular value means one of the entries is non-zero, say -af—n « The
i i ; 8q
> < -
change of coordinates qn _ 4 dEigm- has Jacobian
q > f

matrix
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1
T
O aq™
1 n-l . .
SO q ,-...594 ,f are coordinates around a in N such that

1 - -1
9 ....,9%  are coordinates around a in f (e).

36. Invariants on a Symplectic Manifold.

We first study quantities invariant under a vector field on any
manifold.
Definition. Let M be a manifold and X a vector field on M;

then a k-form @ is invariant under X if and only if LXaf =0,

We have the equivalences

oJs

Lya=0 iff Ft”a = @, where F is a flow of X,

iff o is constant on integral curves of X.
The following properties are easy to prove.
(i) @ invariant under X implies ixa' and da are invariant under X,
(ii) @ and B invariant under X implies aap is invariant under X.
@ is invariant under X,

(iii) « invariant under X and L_Y = 0 implies i

X Y

where X,Y are vector fields and «,p forms.

Proof of (i) for iXa; By the "homotopy identity" (1) of 33,

LX = ]Xd + d1X, thus

LX(lxa') = 1Xd igat dlxlxa' = -1X5<doz + d]T)CIXa°
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But the definition of lX shows that i.XiX = 0, since we are dealing with
alternating tensors, so LX(iXa) = 0.
Proof of (ii): Lx is a derivation.

Proof of (iii):

Ly (iya)

L (C («®Y))
C(Lx(a®Y))

C‘(an®Y +a@L,Y) =0

where c is the contraction operator which commutes with Lie

derivatives.

A submanifold V of M is an invariant submanifold of X if for

each ae V, X e T VCT M.
a a a

Theorem. Suppose M a manifold and X a vector field on M.
If the function M—> R, asa O-form, is invariant under X and if
e is a regular value of k, then k-l(e) is an invariant submanifold
of X.

Proof. By the previous theorem, k-l(e) is a submanifold of M

and for each a ¢ M such that k(a) = e there are coordinates

1 3 -1
q goesn qm around a in M with q ,..., qm coordinates for a in
k-l(e) and ¥ # 0. By definition of L, for X =2 o 8' ;
qu N X 8q1

m-1
0=Lyk= Ldk,X» = >, o xt 4 %k ym %k ym
i=1 8q 9gq™ aq

0; but

i

-1 m
at a because k is constanton k (e). Thus X a
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=i, ' ) -1
Ta(k (e)) = {we TaMl .the last component w__ = 0}. So X ¢ Ta(k (e)),

which was to be proved,

> IR is an invariant of the vector

Proposition., If the function M

field X on the manifold M and if e is a regular value of K, then a
1
(e)

trajectory of X which meets a connected component Ze of k

lies entirely in Ee’

(Here connected means path connected; i.e., any two points of Ze
can be connected by a path lying entirely in z..)

Proof. Let y be a trajectory for X starting at the point a € Z,. |
Because Z. is an invariant submanifold of X, X|Z‘e is a vector field
on Z,~ The existence and uniqueness theorems for differential equations
say there is a unique trajectory y' in Ze starting at a which satisfies
the différential equation for X[Ze, But vy is such a trajectory, thus

v =v' and y lies in Ze.

Now consider invariants for a symplectic manifold (M, w) of

dimension 2n.

Definition. A vector field X on (M, w) is locally Hamiltonian

if and only if w is invariant under X; i.e.; LXw = 0, Egquivalent con-

ditions are
(a) dixw= 0,
4
(b) X* 1is closed,

V4
(¢) X* = dH locally, for some function H.
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The vector field X is globally Hamiltonian if and only if there is a

b
smooth M—H—PIR such that X = (dH)#, or equivalently, X is

exact.

Recall that a volume on M is a nowhere zero 2n-form. For
-1 n/2
n!

locally Hamiltonian vector field, then Lxm =0, so LXS'Z = 0. The

example Q= WwA.,. Aw (ntimes) is a volume. If X isa
volume element thus is constant under motion along X. This state-
ment becomes Liouville’s Theorem when translated into the language
of statistical mechanics. In detail, in statistical mechanics a system
of n particles is replaced by a single particle in 3n-dimensional con-
figuration space, and hence by a point moving in 6n-dimensional phase
space, An ensemble of systems thus corresponds to an ensemble of
points in phase space. Liouville's Theorem states that the density of

this ensemble is constant along the trajectories.

37, Submanifolds of Constant Energy.

The last proposition shows that for the trajectories defined by the
globally Hamiltonian vector field (dH)# it is appropriate to restrict
consideration to the submanifolds where H is constant. We now examine

the structure of such submanifolds for any suitable function K.
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Theorem. (Hamilton-Jacobi); Let X be a vector field on an
m-dimensional manifold M, M—K;-éIR an invariant of X, e a regular
value of K, and V a connected component of Knl(e)g then

1° V is an embedded submanifold of dimension m-1.

o . . .
2 If M is oriented, sois V.

30 If M has an X-invariant volume §2, then V has an XIV-
invariant volume QV’

Proof, 1° has already been proven,

2°, We will need a "normal™ vector field N for V; that is, a
smooth function V——= T, M with the property that for ea.cl"l ae V-

T"aM = v*; ;V)'BIEU Na

where vis the inclusion of V in M. To get suchan N let g be any
Riemannian metric on M (see the end of the proof for a different method).

and set N = g#odK- v. Thus Na for each point a is the unique vector

such that g(Nz, -) = dvaK is the differential of K at va.

g
;°MZ # TPM
N’I/ Te
y dK
v > M

v
To prove that N is a "normal® vector field it suffices to show that
N, ¢ v“’(TaV)u Now
v, (T,V) = {Ye TvaM|<dvaK,Y> = 9} ,

but <dvaKs Na? = g(Na,Na) which is not zero unless Na = 0, Since
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e is a regular value dvaK = g(Na,-) #0, so Na cannot be zero.
Suppose R is a non-zero volume on M, then v¥( iN.Q) is an

(m-1)-formon V and

iNﬂ (v*wl, — V*Wm-l)
mQ (N, VW

#0,

*
Therefore, v ( 1N52) is a volume on V. Consequently, V is orientable.

@ (W, w )

1""’V*Wm-1)

This applies in particular when M is symplectic, and hence orientable.

30 First we need a lemma:
Lemma. If y is an (m-1)-formon M, a¢ V, and

w e T V, then
a

g Wy

(dKM{)a(Na, VW 30 nes VW

)

m-1

= c<dK9N>aYa‘(v*W13"'!vd‘w )

* 'm-1

with ¢ a non-zero constant.

Proof of Lemma. We use the definition of a form as an alternating

tensor. Indeed
(dK ®y)a(Na,v*W1, R v*wm_i) = {dK., N>aya ( VW ireees v*wm_i),

so (dK/\y)a(Na,v*wi,Ma,v*wm_i)

¢

— 1 & ¢
- F O-EES (_1) (dK®Y)a(Na’V*W1"“’V*Wm-i)
m
1
= S LIRND Y, (VW w ),

because <dK9 W, >a. =0 and vy is a form. Putting c = m—i proves the

lemma.
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Now assume £ is an X-invariant volume on M and let 6 = iNQ,

Then dKA@ is an m-form, and hence is a multiple of Q:

dKAB = h.Q where h: M —> IR is smooth.
In order to make v'© invariant, we want h=1 -- if h # 0, we can

multiply by h-l. But

"c oo o
ha€ (Na, VW) , v*wm_l)

)

@K A e)a(Na, VaW g eae, VW

19
c <dK’N>a9a(v*wl’ ey VW

m-1

1)

c'<dK= N>a Qa(Na_,, 1)$W1 T v*wrn_1

)s

For w linearly independent in TaV’ all the terms, except

170 Vm_g
ha, at both ends of this equation are noa-zerc: therefore ha is also
non-zero. Thus set 9 = h-le; then dKAB =Q and v* 8 is a volume
(as in 20). We must finally show v*% invariant under XN = v¥X,
First

= Q = AB
0 LX LXdK 8 + dK/\Lxg

so dK /\LXG = 0. :
Using the lemma again

0= (dKA Lxe)a

c {dK, N>a (Lxg)a( VW coena VW

§]

(Na, v, w VW 1)

1’°° * m-

1]

m-1

= c<dK,N>a v (LXe)a(Wl"”’wm-l)
= c(dK,N>a(LXIVv Q)a (Wl,,,.,wm_l)a

Since the first two factors ¢ and K,N? on the right are non-zero,
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we get L *8) = 0, which proves 3°.
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This proof of the Hamilton-Jacobi thsorem is a presentation of that

given in Abraham, loc.cit., in numbers 11.11, 11.15,15.]3, 16, 27
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This proof made use of the fact that there exists a Riemannian
metric on any manifold. The use of this result is efficient and sug-
gestive, but there is no unique or canonical such metric. After the
lecture, Alan Waterman suggested the following (standard ) way of avoid-
ing the choice of a metric.

Lemma, For M, K, and V as in the theorem, let Q be any
m-.form on M. Then there is a l-form 6 on V such that for any
point a of V there is a coordinate neighborhood of a in M and an
(m»-l)-form B on the neighborhood with

ale
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e=v g, 2=pAdK,

Proof. Let v:V —> M be the inclusion. Since dK#0 at e, we
can take K as one of the coordinates at a in M, The form  of
maximal dimension can then be written locally as Q = B AdK, where B
is some (m-1)-form on M. This form B is not unique, but if also
2 = p'AdK in the same coordinate neighborhood, then a representation
with coordinates shows that v*ﬂ = V*B’n Therefore 6 = v*[i = v*ﬁ' is
an (m:l)-form well-defined everywhere on V, and the lemma holds.

The theorem itself is now readily proved from this lemma; in

particular, since Q and K are both invariants for X, it follows that

@ is an X|V-invariant volume.



a3

Chapter V. QUALITATIVE PROPERTIES OF VECTOR FIELDS

38. Orbits.

This chapter is devoted to the study of the qualitative properties of
the trajectories (integré,l curves) of vector fields on manifolds. Except
for the first section, the chapter consists of notes of lectures given by
Prof. René Thom of the Institute des Hautes Etudes Scientifiques (France).

Hence suppose M is a manifold and X a vector field on M. Con-
sider trajectories of X; that is, the curves c:I —> M such that the
tangent vector to c at each point is the value of X at that point. We
shall assume that ¢ and the given interval I are chosen so that 0 ¢ I.

Let

}aX = {(a,t)] a € M,t e R and there exists a trajectory c: I— M
of X with c(0)=a and te I}.

By the uniqueness theorem for differential equations, there exists a
smooth map (a "flow")

> M

b
such that for each a, F(a,-) is a trajectory for X =-- in fact is the
maximal trajectory through a. ( DX is an open subset of M X IR, so
it is meaningful to require that F be smooth.)

An orbit of X is the image in M of a maximal trajectory. A closed

orbit of X is an orbit which is compact. For example, the vector field
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going around the torus as indicated has (infinitely) many closed orbits.

Finally, the support of X is the closure of the set {aeM]|X(a) #0}.

A vector field X is coniglete when '&x = MXIR. It is equivalent to say
that every integral curve of X can be ex:ended to one whose domain of defini-
tion is the whole real line. This cannot always happen. For example, let
U be the first quadrant of ]RZ, with the usual coordinates x,y. Then the
vector field X(x,y) = (:l{- »1) is not complete. (Verification is left to the
reader.) If however, the closure of the set of points p where X(p) # 0 is
compact , then X is complefe.

The most important thing about a complete vector field is that it yields

a one-parameter group of diffeomorphisms. For each s ¢ R, there is a

diffeomorphism Qs of the manifold such that @o =1 and @sét = §s+t' Ex-
plicitly, ®,(p) is the value of the integral curve of X with initial conditions
p at time s. In contrast a non-complete vector field yields only local diffeo-
morphisms rather than global ones.

Theorem. Let X be a vector field on M. If M is a compact manifold

or if X has compact support, then X is complete.

We sketch the proof in the case that M is compact. We shall use the fact
that in a compact space every infinite sedquence of points has a convergent

subsequence.
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We want to show that we can prolong any trajectory c:I1—=>M

= < < .
where 1 (to’ti) for t, 0<t,

Suppose ¢ were maximal and

b, M

-

t, <co. Let {t;} be a sequence of IJ_O ,
L

1

paints in I convergent to t1. Then f
. & t. /

the sequence .{c(ti)} in M has a

limit point m (i.e., some subse-

~.
~—

quence of {C(ti)} converges to m). Apply the existence theorem of
differential equations to get a flow box F: U X 11 —> M at m. Thus
UC M is an open set containing m. But m must be in the closure of
the image of c. Therefore, U contains some point c(t) in the image
of c. F(c(t),-) is a trajectory through c(t) which must extend c.

A rimilar argument applies to the case when M is not compact but
X has compact support..

Suppose next that K is a compact orbit of X. Then we may as well
assume that K is not a point, and consequently that X is never zero
on K. The main result is that compact orbits are periodic.

Theorem. Suppose ¢:IR —> M is a non -constant integral curve of
X with compact image K. Then there is a T > 0 such that
o(t+7) = o(t), all t.

The least such t is called the period of the orbit.
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Proof. We first notice that we can assume the vector field X to be
complete. For if we take a neighborhood W of K with compact closure
and a C% function @ whichis 1 near K and 0 off W, then aX is a
vector field with compact support which agrees with X near K; also ¢
is an integral curve of aX.

It suffices to show that there are points t # t' such that o(t) = o(t').
For if {@S: M —> M} is the corresponding i-parameter group of diffeo-
morphisms of M, it then follows that

ols+t -t) =2 oft)=2_ ot = o(s)

s
for all s ¢ R, If t>t', this is the conclusion (T =t-t') of the theorem;
since t and t' are symmetric, we may suppose this is so.

We thus want to prove the following.

Lemma. There are points t # t' such that ¢(t) = ¢(t').

Proof As noted earlier, X is non-zero on a neighborhood of K.
Therefore, by the inverse function theorem, there exists an open interval
J CIR containing 0 and an open disk V' of radius & such that J X V!
n-1

: . 3 . ’ 1
is a coordinate neighborhood at X(0) with coordinates t and v P 5

and such that locally
o(t) = (t,0).

By continuity we may assume that if

) D
X = Zwiavi MRAT
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then y is bounded away from zero (and in fact is positive on J X V'),
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Suppose ¢(t) ¢ J X V', By our hypothesig that y is positive, a point
can travel backward or forward along the trajectory of ¢ until it meets
the disk 0 X V', (In the anve picture, the point travels backwards from
(p(ti) and forwards from rp(tz).)

Again by our hypotheses on X, if '.(P(t) = (0,v'), then no other nearby
point can also get mapped into 0 X V'. This is because the component y
is bounded away from zero, and hence the integral curves must have at
least some fixed positive velocity in the gat— direction. In other words,
the set of points t such that ¢(t) ¢ 0 X V' is an isolated subset of R.
But it is easy to show that any such subset is countable; that is, it is in
1-1 correspondence with a subset of the pozitive “rriel  rs.

Since KN (0 X V') is countable and [0,1) is uncountable, there

exists an g' <& such that no point of K has distance exactly g' from

the origin. Let V be the closed disk of radius ¢'; then KN (0 X V) is
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compact and countable, and is contained in the interior of V. As a sub-
set of a metric space, it has a notion of distance.
It is left to the reader to prove the next result, which is a trivial

consequence of Baire's theorem (see e.g., Kelley, General Topology)

Sublemma. Let Y be a compact metric space which is countable.
Then Y has an isolated point.

Therefore, there ié a t and a neighborhood U of (p(to) in V
such that K AU =g . Again, it follows by continuity that there is a
U' € U neighborhood of <p(t°) and a Jo € J neighborhood of 0 such
that K ("\(J'o X U') = Jo X (p(to)

Composing the result with the diffeomorphism @S for s = 1:i - toﬂ
we see that for any point (P(ti) € K, there exists a coordinate neighbor-
hood J X U of go(‘ti) such that the intersection of K with the neighbor-
hood is J X 0.

Since K is compact, there is a finite collection of (J'i X Ui)
covering it. Since the inverse imagesof the .]'i X 0 then cover IR, it
follows that some point t' outside some interval tk+ .]'k gets mapped

into J'k X 0. But we know some t ¢ tk F Jk gets mapped onto any point

of .Tk X 0, and for these choices ¢(t') = ¢(t).
We now want to ask what the critical elements of a vector field X
are. These are of two types:

1) 2 e M suchthat X(a) = 0 (for example, the south pole on the

sphere with a vector field which everywhere points downward). Since



